The Inviscid Limit and Boundary Layers for Navier-Stokes flows
نویسندگان
چکیده
The validity of the vanishing viscosity limit, that is, whether solutions of the Navier-Stokes equations modeling viscous incompressible flows converge to solutions of the Euler equations modeling inviscid incompressible flows as viscosity approaches zero, is one of the most fundamental issues in mathematical fluid mechanics. The problem is classified into two categories: the case when the physical boundary is absent, and the case when the physical boundary is present and the effect of the boundary layer becomes significant. The aim of this chapter is to review recent progress on the mathematical analysis of this problem in each category.
منابع مشابه
A Composite Finite Difference Scheme for Subsonic Transonic Flows (RESEARCH NOTE).
This paper presents a simple and computationally-efficient algorithm for solving steady two-dimensional subsonic and transonic compressible flow over an airfoil. This work uses an interactive viscous-inviscid solution by incorporating the viscous effects in a thin shear-layer. Boundary-layer approximation reduces the Navier-Stokes equations to a parabolic set of coupled, non-linear partial diff...
متن کاملSimulation of Pitching and Heaving Airfoil with Oscillation of Flow Boundary Condition
A pressure based implicit procedure to solve the Euler and Navier-Stokes equation is developed to predict transonic viscous and inviscid flows around the pitching and heaving airfoils with a high reslution scheme. In this process, nonorthogonal and non moving mesh with collocated finite volume formulation are used. In order to simulate pitching or heaving airfoil, oscillation of flow boundary c...
متن کاملOn the inviscid limit for 2D incompressible flow with Navier friction condition
In [1], T. Clopeau, A. Mikelić, and R. Robert studied the inviscid limit of the 2D incompressible Navier-Stokes equations in a bounded domain subject to Navier friction-type boundary conditions. They proved that the inviscid limit satisfies the incompressible Euler equations and their result ultimately includes flows generated by bounded initial vorticities. Our purpose in this article is to ad...
متن کاملViscous boundary layers for the Navier-Stokes equations with the Navier slip conditions
We tackle the issue of the inviscid limit of the incompressible Navier-Stokes equations when the Navier slip-with-friction conditions are prescribed on the impermeable boundaries. We justify an asymptotic expansion which involves a weak amplitude boundary layer, with the same thickness as in Prandtl’s theory and a linear behavior. This analysis holds for general regular domains, in both dimensi...
متن کاملOn the inviscid limit of the Navier-Stokes equations
We consider the convergence in the L norm, uniformly in time, of the Navier-Stokes equations with Dirichlet boundary conditions to the Euler equations with slip boundary conditions. We prove that if the Oleinik conditions of no back-flow in the trace of the Euler flow, and of a lower bound for the Navier-Stokes vorticity is assumed in a Kato-like boundary layer, then the inviscid limit holds. M...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016